Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 174: 108405, 2024 May.
Article in English | MEDLINE | ID: mdl-38613890

ABSTRACT

BACKGROUND: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (µ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS: For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, µ and Et. CONCLUSION: This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.


Subject(s)
Femur , Finite Element Analysis , Humans , Femur/physiology , Hip Prosthesis , Models, Biological , Biomechanical Phenomena/physiology , Elastic Modulus
2.
J Mech Behav Biomed Mater ; 152: 106465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377641

ABSTRACT

In various medical fields, a change of soft tissue stiffness is associated with its physio-pathological evolution. While elastography is extensively employed to assess soft tissue stiffness in vivo, its application requires a complex and expensive technology. The aim of this study is to determine whether an easy-to-use method based on impact analysis can be employed to determine the concentration of agar-based soft tissue mimicking phantoms. Impact analysis was performed on soft tissue mimicking phantoms made of agar gel with a mass concentration ranging from 1% to 5%. An indicator Δt is derived from the temporal variation of the impact force signal between the hammer and a small beam in contact with the sample. The results show a non-linear decrease of Δt as a function of the agar concentration (and thus of the sample stiffness). The value of Δt provides an estimation of the agar concentration with an error of 0.11%. This sensitivity of the impact analysis based method to the agar concentration is of the same order of magnitude than results obtained with elastography techniques. This study opens new paths towards the development of impact analysis for a fast, easy and relatively inexpensive clinical evaluation of soft tissue elastic properties.


Subject(s)
Elasticity Imaging Techniques , Agar , Phantoms, Imaging
3.
Proc Inst Mech Eng H ; 237(5): 585-596, 2023 May.
Article in English | MEDLINE | ID: mdl-36992542

ABSTRACT

Periprosthetic femoral bone fractures are frequent complications of Total Hip Arthroplasty (THA) and may occur during the insertion of uncemented Femoral Stems (FS), due to the nature of the press-fit fixation. Such fracture may lead to the surgical failure of the THA and require a revision surgery, which may have dramatic consequences. Therefore, an early detection of intra-operative fractures is important to avoid worsening the fracture and/or to enable a peroperative treatment. The aim of this in vitro study is to determine the sensitivity of a method based on resonance frequency analysis of the bone-stem-ancillary system for periprosthetic fractures detection. A periprosthetic fracture was artificially created close to the lesser-trochanter of 10 femoral bone mimicking phantoms. The bone-stem-ancillary resonance frequencies in the range (2-12) kHz were measured on an ancillary instrumented with piezoelectric sensors, which was fixed to the femoral stem. The measurements were repeated for different fracture lengths from 4 to 55 mm. The results show a decrease of the resonance frequencies due to the fracture occurrence and propagation. The frequency shift reached up to 170 Hz. The minimum fracture length that can be detected varies from 3.1±1.7 mm to 5.9±1.9 mm according to the mode and to the specimen. A significantly higher sensitivity (p = 0.011) was obtained for a resonance frequency around 10.6 kHz, corresponding to a mode vibrating in a plane perpendicular to the fracture. This study opens new paths toward the development of non-invasive vibration-based methods for intra-operative periprosthetic fractures detection.


Subject(s)
Arthroplasty, Replacement, Hip , Femoral Fractures , Hip Prosthesis , Periprosthetic Fractures , Humans , Periprosthetic Fractures/surgery , Periprosthetic Fractures/epidemiology , Periprosthetic Fractures/etiology , Vibration , Femur/surgery , Arthroplasty, Replacement, Hip/adverse effects , Femoral Fractures/diagnostic imaging , Femoral Fractures/surgery , Reoperation/adverse effects , Hip Prosthesis/adverse effects
4.
Biomech Model Mechanobiol ; 22(2): 611-628, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36542227

ABSTRACT

The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone-implant-ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young's modulus [Formula: see text] and the bone-implant contact friction coefficient [Formula: see text] are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone-implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with [Formula: see text], IF and [Formula: see text], the bone-implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone-implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone-implant-ancillary system increase with the bone-implant contact ratio and the trabecular bone Young's modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.


Subject(s)
Mechanical Phenomena , Vibration , Humans , Finite Element Analysis , Femur/surgery , Friction , Biomechanical Phenomena
5.
Ann Biomed Eng ; 50(1): 16-28, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34993695

ABSTRACT

The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability. The aim of this study is to investigate whether EMA performed directly on the ancillary could be used to monitor the femoral stem insertion into the bone. To do so, a cementless femoral stem was inserted into 10 bone phantoms of human femurs and EMA was carried out on the ancillary using a dedicated impact hammer for each insertion step. Two bending modes could be identified in the frequency range [400-8000] Hz for which the resonance frequency was shown to be sensitive to the insertion step and to the bone-implant interface properties. A significant correlation was obtained between the two modal frequencies and the implant insertion depth (R2 = 0.95 ± 0.04 and R2 = 0.94 ± 0.06). This study opens new paths towards the development of noninvasive vibration based evaluation methods to monitor cementless implant insertion.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Arthroplasty, Replacement, Hip/methods , Bone-Implant Interface , Femur/surgery , Humans , Lower Extremity , Prosthesis Design
6.
Facial Plast Surg Aesthet Med ; 24(5): 369-374, 2022.
Article in English | MEDLINE | ID: mdl-34449254

ABSTRACT

Background: Osteotomies during rhinoplasty are usually based on surgeon's proprioception to determine the number, energy, and trajectory of impacts. Objective: The first objective was to detect the occurrence of fractures. The second objective was to determine when the thicker frontal bone was encountered by the osteotome. Materials and Methods: An instrumented hammer was used to measure the impact force during lateral osteotomies on nine human anatomic specimens. A prediction algorithm was developed using machine learning techniques, to detect the occurrence of fractures, and the proximity of the osteotome to the frontal bone. Results: The algorithm was able to predict the occurrence of fractures and the proximity to the frontal bone with a prediction rate of 83%, 91%, and 93% when allowing for an error of 0, 1, and 2 impacts, respectively. The location of the osteotome in the frontal bone was predicted with an error of 7.7%. Conclusion: An osteotomy hammer measuring the impact force when performing lateral osteotomies can predict the occurrence of fractures and the proximity to the frontal bone, providing the surgeon with instant feedback.


Subject(s)
Rhinoplasty , Cadaver , Humans , Machine Learning , Osteotomy/methods , Rhinoplasty/methods
7.
Med Eng Phys ; 95: 111-116, 2021 09.
Article in English | MEDLINE | ID: mdl-34479687

ABSTRACT

Osteotomies during rhinoplasty are usually based on the surgeon's proprioception to determine the number and the strength of the impacts. The aim of this study is to determine whether a hammer instrumented with a force sensor can be used to classify fractures and to determine the location of the osteotome tip. Two lateral osteotomies were realized in nine anatomical subjects using an instrumented hammer recording the evolution of the impact force. Two indicators τ and λ were derived from the signal, and video analysis was used to determine whether the osteotome tip was located in nasal or frontal bone as well as the condition of the bone tissue around the osteotome tip. A machine-learning algorithm was used to predict the condition of bone tissue after each impact. The algorithm was able to predict the condition of the bone after the impacts with an accuracy of 83%, 91%, and 93% when considering a tolerance of 0, 1, and 2 impacts, respectively. Moreover, in nasal bone, the values of τ and λ were significantly lower (p < 10-10) and higher (p < 10-4) than in frontal bone, respectively. This study paves the way for the development of the instrumented hammer as a decision support system.


Subject(s)
Fractures, Bone , Rhinoplasty , Humans , Machine Learning , Nasal Bone/surgery , Osteotomy
8.
Proc Inst Mech Eng H ; 235(7): 838-845, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33892610

ABSTRACT

Osteotomies are common surgical procedures used for instance in rhinoplasty and usually performed using an osteotome impacted by a mallet. Visual control being difficult, osteotomies are often based on the surgeon proprioception to determine the number and energy of each impact. The aim of this study is to determine whether a hammer instrumented with a piezoelectric force sensor can be used to (i) follow the displacement of the osteotome and (ii) determine when the tip of the osteotome arrives in frontal bone, which corresponds to the end of the osteotomy pathway. Seven New Zealand White rabbit heads were collected, and two osteotomies were performed on their left and right nasal bones using the instrumented hammer to record the variation of the force as a function of time during each impact. The second peak time τ was derived from each signal while the displacement of the osteotome tip D was determined using video motion tracking. The results showed a significant correlation between τ and D (ρ2 = 0.74), allowing to estimate the displacement of the osteotome through the measurement of τ. The values of τ measured in the frontal bone were significantly lower than in the nasal bone (p<10-10), which allows to determine the transition between the nasal and frontal bones when τ becomes lower than 0.78 its initial averaged value. Although results should be validated clinically, this technology could be used by surgeons in the future as a decision support system to help assessing the osteotome environment.


Subject(s)
Nasal Bone , Rhinoplasty , Animals , Disease Models, Animal , Mechanical Phenomena , Nasal Bone/surgery , Osteotomy , Rabbits
9.
Clin Biomech (Bristol, Avon) ; 76: 105006, 2020 06.
Article in English | MEDLINE | ID: mdl-32388077

ABSTRACT

BACKGROUND: The success of cementless hip arthroplasty depends on the primary stability of the femoral stem. It remains difficult to assess the optimal number of impacts to guarantee the femoral stem stability while avoiding bone fracture. The aim of this study is to validate a method using a hammer instrumented with a force sensor to monitor the insertion of femoral stem in bovine femoral samples. METHODS: Different cementless femoral stem were impacted into five bovine femur samples, leading to 99 configurations. Three methods were used to quantify the insertion endpoint: the impact hammer, video motion tracking and the surgeon proprioception. For each configuration, the number of impacts performed by the surgeon until he felt a correct insertion was noted Nsurg. The insertion depth E was measured through video motion tracking, and the impact number Nvid corresponding to the end of the insertion was estimated. Two indicators, noted I and D, were determined from the analysis of the time variation of the force, and the impact number Nd corresponding to a threshold reached in D variation was estimated. FINDINGS: The pullout force of the femoral stem was significantly correlated with I (R2 = 0.81). The values of Nsurg, Nvid and Nd were similar for all configurations. INTERPRETATION: The results validate the use of the impact hammer to assess the primary stability of the femoral stem and the moment when the surgeon should stop the impaction procedure for an optimal insertion, which could lead to the development of a decision support system.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Femur/surgery , Hip Prosthesis , Mechanical Phenomena , Animals , Cattle , Female , Humans , Male , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...